Indian Statistical Institute Bangalore Back Paper Examination Date: June 11, 2019.

Topology B.Math II Instructor: Santhosh Kumar P Total: 50

All questions carry equal marks.

- (1) Define separable topological space. Show that if X has a countable basis, then X is separable. Is the converse true ? Justify.
- (2) (a) Give an example of connected space which is not path connected.
 - (b) Let A be a subset of a Hausdorff space X. Show that if x is a limit point of A if and only if every nbd of x contains infinitely many points of A.
- (3) Show that
 - (a) If X is a non-compact metric space, then there exists an unbounded continuous function $f: X \to \mathbb{R}$.
 - (b) Let $X = \mathbb{R}$ with co-countable topology, then every continuous function $f: X \to \mathbb{R}$ is constant.
- (4) Define locally compact topological space. Does continuus function preserves locally compactness? Justify.
- (5) Show that if \widetilde{X} is the quotient of $\mathbb{R}^n (n \in \mathbb{N})$ obtained by the equivalence relation $a \sim b$ if and only if $a b \in \mathbb{Z}^n$ for all $a, b \in \mathbb{R}^n$, then

 \widetilde{X} is homeomorphic to n - dimensional torus $(\mathbb{S}^1)^n$.